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The continuous model
SDE

• A time homogeneous diffusion process

dXt = b(Xt)dWt

• We are normally interested in calculating the expected value
of functions of XT

u(t, x;T, f) = E [f(XT )|Xt = x]

• u satisfies a PDE (backward)

∂tu+
1

2
b2∂xxu = 0

u(T, x) = f(x)
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The semigroup
SDE

• An SDE generates a semigroup

[P (s) ◦ f ] (x) = E [f(XT )|XT−s = x]

P (0) = I

P (t+ s) = P (t) ◦ P (s)

• with well known infinitesimal generator

[A ◦ f ] (x) = lim
s→0+

[P (s) ◦ f ] (x)− f(x)

s

=
1

2
b2(x)∂xxf(x)

• and formal solution

∂sP (s) = A ◦ P (s)

P (s) ◦ f = esA ◦ f =

∞∑
k=0

sk

k!
Ak ◦ f
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Adjoint semigroup
The forward equation

There is an other semigroup: P ∗ the adjoint of P , defined by

〈P (s) ◦ f, g〉 = 〈f, P ∗(s) ◦ g〉 ∈ R

which acts like an integration by parts.
P ∗ is indeed a semigroup with infinitesimal generator A∗

[A∗ ◦ g] (y) =
1

2
∂yy
(
b2(y)g(y)

)
• P brings functions backward (via conditional expectation)

• P ∗ moves densities forward (by simulation)
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Forward and backward equations

Both semigroups have wide applications in Finance

• Going backward to price a deal

∂tu+
1

2
b2∂xxu = 0

u(T, x) = f(x)

• Going forward to evolve the density

∂tu−
1

2
∂yy(b

2u) = 0

u(0, y) = δx0

The 2 equations look similar enough to be handled by the same
solver (even more so, if the coefficients are not state dependent).
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Finite difference solvers

• Replace all derivatives with finite difference approximations on
a grid

• The solution is obtained via a linear system

• The system is built row by row

• What about boundary conditions?
Need to complement the system with exogenously given
equations that hold on the first and last points of the grid:

1 Ghost point method
2 Absorption
3 Linear solution
4 Known value
5 Zero probability

(They end up in the first and last rows)
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The linear system

In both cases we end up solving a system like

ui+1 − ui = hAui+1

with a matrix qualitatively similar to

A ∼


−x x

1 −2 1
1 −2 1

1 −2 1
y −y


Although this is a good choice for the backward equation, it can
cause a lot of issues in the forward.
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Forward equation
Brownian motion

Numerical solution of the forward equation for a Brownian motion
(19 points, ∆x = 0.3, exact matrix exponential)
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The loss of mass is due to bad boundary conditions (zero
probability). We cannot simply force the solution to be 0.
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One step backward

• Let’s rewind and start over

• Discretise the process (once!), not the equations (twice!)
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The discrete model
Continuous Time Markov Chain

• A CTMC is a time homogeneous pure jump process (Xt) fully
characterised by the transition rates between states

• X is the state space (finite), Xt ∈ X = {x1, · · · , xN}
• γij is the jump intensity from xi to xj (Poisson)

qij(h) = P [Xt+h = xj |Xt = xi] = δij + γijh+ o(h)

• Γ = (γij) is called the transition rate matrix

• Q(h) = (qij(h)) is the transition matrix (i.e. probabilities)
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The semigroup
CTMC

A CTMC generates a semigroup as well

z ∈ RN

P (s) ◦ z = E [z(XT )|XT−s]

=
∑
j

qij(s)zj = Q(s)z

with generator

A ◦ z = lim
s→0+

Q(s)z− z

s

= lim
s→0+

z + sΓz + o(s)− z

s

= Γz
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CTMC
Transition rate matrix

• γij is the intensity of arriving to xj from xi

• −γii is the intensity of leaving xi

• since the process leaving xi must land somewhere, we have

γij ≥ 0∑
j

γij = 0

 =⇒ γii = −
∑
j 6=i

γij ≤ 0

• the transition probabilities can be calculated as

Q(s) = esΓ ≥ 0
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Transition rate matrix
Example

Jump intensities for the variance process in the Heston model.



−7.77 7.77 0 0 0 0 0 0 0 0

0.40 −2.73 2.33 0 0 0 0 0 0 0

0 0.27 −1.02 0.75 0 0 0 0 0 0

0 0 0.84 −1.01 0.17 0 0 0 0 0

0 0 0 1.86 −2.04 0.18 0 0 0 0

0 0 0 0 2.69 −2.87 0.18 0 0 0

0 0 0 0 0 3.44 −3.62 0.18 0 0

0 0 0 0 0 0 4.14 −4.32 0.18 0

0 0 0 0 0 0 0 4.81 −5.00 0.19

0 0 0 0 0 0 0 0 5.26 −5.26



1 Off-diagonal positive

2 Diagonal negative

3 Sum by row zero
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CTMC
Adjoint semigroup

There is an adjoint semigroup for CTMC as well

z,y ∈ RN

〈P (s) ◦ z,y〉 = 〈Q(s)z,y〉 ∈ R
= y′Q(s)z

=
〈
z, Q(s)′y

〉
= 〈z, P ∗(s) ◦ y〉

The semigroup P ∗ is the matrix transpose of P

P ∗(s) ◦ y = esΓ
′
y

A∗ ◦ y = Γ′y
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Discretisation of an SDE

To discretise an SDE into a CTMC we need to determine

• the state space
• handle the (new) boundaries (the SDE might not have any)

• the transition intensities
• the shape of the matrix: full, sparse (do we allow jumps

everywhere or just local jumps?)
• what to preserve in the discrete model

Then we can use the matrix exponential to solve the semigroup
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The matrix exponential
Exact solution of the discrete process

• The matrix exponential can be computed exactly

esΓ = V esΛV −1

but this is very slow and numerically unstable

• instead we use more tractable formulas to approximate it
(Padé approximants)

esΓ ∼ V R(m,n)(Λ)V −1

ex = R(m,n)(x) + o(xm+n)

• We are not interested in time discretisation in this context
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From SDE to CTMC

• The state space is a finite uniform grid: xi = x̄+ i∆x

• The transition rate matrix is multi-tridiagonal: the process
can only jump to adjacent states (in 1D, γ−i and γ+

i )

• We try to preserve the first 2 infinitesimal moments
• SDE (drift-less)

Ex [Xh −X0] = o(h)

Ex
[
(Xh −X0)

2
]

= hb2(x) + o(h)

• CTMC

Ei [Xh −X0] = h∆x(γ+i − γ
−
i ) + o(h)

Ei
[
(Xh −X0)

2
]

= h∆2
x(γ+i + γ−i ) + o(h)
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CTMC
Choice of coefficients

The system is 
∆x(γ+

i − γ
−
i ) = 0

∆2
x(γ+

i + γ−i ) = b2i
γ+
i , γ

−
i ≥ 0

with (familiar) solution

γ−i = γ+
i =

b2i
2∆2

x

γii = −γ−i − γ
+
i
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CTMC
Transition rate matrix

We decide to absorb the process on the boundaries, γ = 0 so it
cannot jump anywhere.
The transition rate matrix looks like

Γ =


0 0
γ−2 γ22 γ+

2

γ−3 γ33 γ+
3

γ−4 γ44 γ+
4

0 0


This is a particle that can jumps left or right by one state at a
time, and when it reaches the boundaries, it stays there.
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Transpose and adjoint

The link between P and P ∗ is the key to understand how to use
the same discretisation for the backward and the forward equation.
To calculate an expected value (i.e. a price):

• either: roll back the solution (s ↓ 0) and select the correct
point on the grid (at 0)

(P (s) ◦ z) ·w0 = w′0e
sΓz

• or: move forward the density (0 ↑ s) and integrate the solution

(P ∗(s) ◦w0) · z = z′esΓ
′
w0

We have used the same Γ and the 2 values are the same!
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Forward equation
Finite difference

We can now write a (new) finite difference approximation of the
forward equation

∂tu−
1

2
∂yy(b

2u) = 0

u(0, y) = δx0

The discrete solution is

u(t) = esΓ
′
1x0

• The linear system is built column by column, not row by row

• The boundary conditions end up in the first and last column
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Forward equation
CTMC

Exact solution of the forward equation for a discretised Brownian
motion (19 points, ∆x = 0.3)
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• No mass loss

• Probability accumulates at the boundaries (the process is
trapped there)

23 / 39



The eigenvalue λ = 0
Transition rate matrix

Eigenvectors associated to λ = 0 have interesting properties

• 1 is an eigenvector (zero sum by row)

• if x is an eigenvector, then Xt is a martingale

• esΓ has the same eigenvectors as Γ, and esλ eigenvalues

Γ1 = 01 =⇒ esΓ1 = es01 = 1

Γx = 0x =⇒ esΓx = es0x = x

Any time discretisation will preserve this eigenvalue:
by construction we get the correct total mass and expected value.
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Lognormal process
Zero eigenvectors
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Any payoff which is a linear combination of these 2 eigenvectors

• has constant expected value

• is priced exactly regardless of the time stepping scheme
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Introducing a drift

The presence of the drift introduces a minor change to the
calculation of the coefficients

Ex [Xh −X0] = ha(x) + o(h)

and the new solution is

γ−i =
b2i

2∆2
x

− ai
2∆x

γ+
i =

b2i
2∆2

x

+
ai

2∆x

as long as b2 ≥ |a|∆x

With a positive drift, it is more likely to jump up: γ+
i > γ−i
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Drift dominated process

What happens when b2 < |a|∆x?
One of the coefficients becomes negative, and the process loses a
physical meaning: transition probabilities can go negative.

• Choose a smaller ∆x: hopefully, the diffusion will dominate

• When solving for coefficients, allow the drift to jump only on
one side (upwind or downwind according to the sign). This is
always a valid choice, although potentially less accurate

γ−i =
b2i

2∆2
x

+
a−i
∆x

, γ+
i =

b2i
2∆2

x

+
a+
i

∆x

• Use an exponentially fitted scheme: increase the volatility to a
level compatible with the drift
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Drift dominated process
Heston volatility process

Impact of negative off diagonal intensities: strong mean reversion

• σ2
0 = σ2

∞ = 20%2, κ = 120%, α = 10%

• grid: 20 points, σ2 ∈ [0, 0.5]

• T = 2Y
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Boundary conditions

Once the particle reaches the boundary, the only degree of freedom
is how fast (γ) it is reflected back inside the domain:

• γ = 0 and it gets trapped there

• γ =∞ and it goes back immediately

We can use γ to match the expected value

E1 [Xh −X0] = h∆xγ + o(h)

= ha1 + o(h)

γ =
a1

∆x

Fine, if the drift points inward (a1 > 0).
Otherwise absorption (γ = 0) seems to be the only choice.
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Boundary conditions
Mean reversion

In case of mean reversion (e.g. Heston vol process)

dσ2
t = κ(σ2

∞ − σ2
t )dt+ ξσtdWt

the drift is benign, it always points inward:

a1 = κ(σ2
∞ − σ2

1)� 0

aN = κ(σ2
∞ − σ2

N )� 0

and boundary conditions do not cause major headaches.
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Boundary conditions
Ghost point

This is a very common technique to handle boundary conditions

• add a new point outside the grid x0

• assign coefficients in the first row as usual: γ1,0, γ1,2

• impose a linear relationship between the solution at the ghost
point and in the rest of the domain

∑N
i=0 αiu(xi) = 0

• use the same relationship to reallocate the intensity for the
non existing point (γ1,0) to the rest of the grid − αi

α0
γ1,0 → γ1,i
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Ghost point
Examples

Calculate the intensities (γ̂1,0) for the ghost point as well (x0)

γ̂1,0 =
b21

2∆2
x

− a1

2∆x
, γ̂1,2 =

b21
2∆2

x

+
a1

2∆x

• linear solution: u(x0)− 2u(x1) + u(x2) = 0

γ1,2 = γ̂1,2 − γ̂1,0 =
a1

∆x

(a.k.a. kill the diffusion, one sided drift)

• flat solution: u(x0) = u(x1)

γ1,2 = γ̂1,2 =
b21

2∆2
x

+
a1

2∆x

(a.k.a. just don’t jump outside)
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Boundary conditions
Example

• Wt is a standard Brownian Motion

• payoff: max(W2, 0)2

• grid: 25 points, Wt ∈ [−3, 3]
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Correlation
Only the corners contribute to the cross product (ρ > 0)

1

h
E
[
∆X1

h∆X2
h

]
= ρb1b2

= γ++∆+
1 ∆+

2 + γ−−∆−1 ∆−2
− γ+−∆+

1 ∆−2 − γ
−+∆−1 ∆+

2

idγ−1 dγ+
1

d
γ−2

dγ+
2 tγ++ ≤ min(γ+

2 , γ
+
1 )

t
γ−−

�
�
�
�
�
�
��

t

t
hard to keep all intensities positive.
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Correlation
Positive correlation

The maximum positive correlation that can be achieved (without
introducing negative intensities) is

1

b1b2

(
min(γ+

1 , γ
+
2 )∆+

1 ∆+
2 + min(γ−1 , γ

−
2 )∆−1 ∆−2

)
≤ 1

If the scale in the 2 dimensions is similar (γ1 ∼ γ2), a wide range
of correlations can be attained.

One would need an exponentially fitted scheme from cross terms
(does it exist?)
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Forward equation: mass or density?

• As the state space of a CTMC is finite, it is natural to
describe distributions by actual probabilities

• Can we use densities (w) instead?

• Yes, but we need a different semigroup

∆X = diag(∆xi)

w = ∆−1
X y∑

wi∆xi = 1

ws =
[
∆−1
X esΓ

′
∆X

]
w0

6= esΓ
′
w0

unless the grid is uniform
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Lognormal process
Uniform in log, or logarithmic in the asset

How to choose the grid for a lognormal process?

• uniform discretisation of the logarithmic process (normal)

• or, logarithmic discretisation of the lognormal process

If we select the correct boundary conditions (loglinear vs linear),
the Γ matrices will be almost the same.
A direct discretisation of St has the advantage of matching by
construction the mean of the process (not just in the limit)

Ei
[
eXh − eX0

]
∼
(
γ−(e−∆x − 1) + γ+(e∆x − 1)

)
exih

∼ − 1

24
b2i∆

2
xe
xih

an error we can avoid for free.
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